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The problem of the impression of pointed stamps along segments of the cross- 
sectional circle of a semi-infinite cylindrical shell supported freely at the end- 

face is considered. The edges of the stamps are absolutely stiff, of constant 

radius, and have no sharp angles. The influence of the shell endface on the 

character of the change in reaction of the stamps is investigated. The problem 

is solved on the basis of the shell theory equations constructed taking account of 

the Kirchoff- Love hypothesis. The friction between the shell surface and the 
stamp edges is not taken into account. 

1. Let us consider a semi-infinite cylindrical shell (Fig. l), freely supported on the 
endface 5 = 0 compressed along segments of the circle i = f. by identical stamps, 

where m denotes the number of stamps ((m = 2) in Fig. 1). 
We consider the stamp edges to be sharp and absolutely stiff so that the contact be- 

tween the shell and stamp is on the arc of a circle whose mannitude is characterized 

by the central angle 8 to be determined. We consider the curvature I/R1 of the stamp 

edges to be constant. Linear stress result- 

ants 4 (reactions) act from the stamp on 

the shell, and we consider them directed 

along the normal to the surface within the 

shell, without taking account of friction. 

Proceeding from the linear theory of thin 

shallow shells, we shall also assume that 
either the angle 8 is small, or the radius 

R, of the stamp edges differs slightly from 
the radius of the outer surface R, of the 

shell 
Fig. 

We obtain the initial equation of the 
problem from the condition of complete abutment of the shell to the stamp in the con- 
tact zone. which can be written as X, = i/R, - II kf,. where X, is the bending str- 
ain of the shell in the circumferential direction on the line of contact. Knowing the 
Green’s function Y for a semi-infinite shell freely supported on the endface E = 0 
the strain X, can be determined by formulas from [lj. Let us show that 
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Y = Q, G - &I, cp - f&J - @ (E + Eo, cp - To> 

where 0 (z, y) is the Green’s function for an infinite shell, E,,, ‘po is the point of 
application of a concentrated factor, E, Cp is the point where mere is a solution, 

E, Eo are longitudinal coordinates referred to the radius, and up, q. are transverse 

coordinates given by the cenrral angles (Fig. 1.) The function 0 (f - %Jo, rp - cp,,) 
is a particular solution of the equation [ 11 

DQ, = 6 (E - Eat cp - 90) (1.1) 

where D is a known linear differential operator, 6 (E - Eo, Cp - qo) is the two-dim- 

ensional delza function. Hence, for the domain E > 0, go > 0 the function 

@ (5 + Eat cp - cpo) i s a solution of the homogeneous equation D@ = 0. Therefore, 

the function Y defined above is a solution of (1.1). On the other hand, because of the 

evenness of the function @ (5, y) the function Y and all its even derivatives vanish on 

the line 5 = 0. Only even derivatives of Y appear in the boundary conditions for a 
shell fteely supported on the endface 5 = 0. Hence, the assertion made can be consid- 

ered proved. 
Utilizing the results of [l], and omitting intermediate computations, the initial 

integral equation to determine the stamp reaction Q are written as 

- Ul) 
- +ln [2 (ch2z - cos (GL - q))] 

(1.3) 
K (a - a,) = 

%b 
2 -f co8 k (a - aI) 
k=l 

a0 
__~f~~(j__), g=-!f-, a=mcp, p=m0 (1.4) 

12RB 

bk = - I + [I + 2ks) e-akx f 
= 1 

2, [Cj (1 - Vj) - d&j] (1.5) 
j=l 

x=ml& 
rlj + icj = e-8kx (-qj+iPj) , rjeiYj = pjqj (bj + iaj) (1.6) 

Here E, Y is the elastic modulus and Poisson’s ratio; R, h are the radius of the middle 
surface and the shell thickness: pj, qj the real and imaginary parts, respectively, of 

the roots of the chracteristic equation of shell theory whose value is given in [l] for 
shallow shells, and aj , bj are constant coefficients also presented in [ 11. The coef- 

ficients cj and dj are, respectively, obtained if the quantity nk-‘(-I)kpj” multip- 

lied by Sin (or - koj) and co9 (yj - I%@,), is substituted into the operator 

- p + v) a + *+_&(&+_&~(.)} (l-7) 

in place of a,f,)/aEk and the quantiry nm sign (d” coscp / dq”‘) in place of 3~7 

a’pm * where n = km and pj and 0, denote the modulus and argument of the com- 

plex number Qj f iPj- 



Contact problem for a semi-Infinite cylindrical shell 787 

The differential operator (1.7) is the operator used in the fundamental resolving Green’s 
function Y to obtain the Green’s function characterizing the bending strain of the shell 
x2. 

A kernel of logarithmic type is obtained in the left side of (1.2) by extracting the 
principal value of the kernel from the Green’s function 0 (f - Es, cp - g+,) for an 
infinite shell. The kernel Ki in the right side is the principal value of the kernel of 
the Green’s function o> fE + &,, rp - off and K (a - U& is the part of the kernel 
remaining after extraction of me principal value. It can be shown that the coefficients 
Sk of the kemel(l.3) decrease as Ilka. The kernel lir, could also not be extracted in 

cl&ed form since neither the function @ (f + Es, cp - Cpo) itself, nor its derivatives 
vanish at infinity for % = Es, cp = ‘p. and go # 0. But for small go the kernel 
Kr can become very large according to (1.3), hence without exlracting K1 the series 

for the kernel K would converge quite slowly. 
The solution of (1.2) for o. = con& will evidently be even. lt must be subjected 

to the condition 

Here P / m is the force applied to the stamp from outside (Fig. I), Condition (1.8) 
esrabllshes a relation between the angle p = me, characterizing the magnitude of the 
contact zone and the force P. In order to isolate the singularity of the solution q at 
the ends of the none of contact explicitly and to simplify the subsequent solution of 
the problem, let us convert (1.2) to a Fredholm equation of the second kind. 

2. Let us consider the equation 
P 

c I 
In 

A 

2 sin uT / pdct = f(ao) (2.1) 

with a known right side which we consider a continuous and even function, Integrating 
the left side of (2.1) bv parts, let us reduce it to a singular integral equation with ker- 
nel of the type Ctg 1/Z (a - UO) relative to the function Q defined by the equation 
dQlda = 4 which is reduced to an equation with Cauchy kernel by means of the 
change of variable t = exp (ia), Having obtained a bounded solution Q (because of 
physical considerations), and having differentiated it, we find the solution of (2.1) in 
the form 

P 
q(CLO)e 1 [ XWI’Wda / c WSLS;~O 

2+X (ad 2e sm l/e (a - ao) (2.2) 

The constant A is determined from the condition 

The canonical function 

(2.3) 

(2.4) 
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Condition (2.3) is the condition for the existence of a bounded solution Q to the inter- 

mediate singular equation. The solution Q of an equation with cot type kernel could 
also be obtained by the method of Sedov c2]. Equations of this kind are in the class of 

equations with automorphic kernels [3], however, it is not expedient to apply this theory 

in this particular case. If the right side in (1.2) is provisionally considered a known 
function, then it agrees with (2.1). Hence, substituting the right side of (I. 2) into the 

solution (2.2) and condition (2.3) in place of f (a) , we transform them after inter - 

changing the order of integration and evaluating the inner integrals, to the form 

P 

Ahsin #- = 1 [y (4 - yI (x1)1 qd% - oom 
4 

fl (aI, a01 = i bk cos ktlJk (x0) 
k==l 

Y?(q) = +- i %(Pk - Pk_l)coslCxl 

k=l 

(2.6) 

(2.7) 

(2.5) 

Here PI, = Pk (cos f!) are Legendre polynomials which are evaluated by utilizing the 

integraL representation [4] 

= +-P,&@f 

The function Jk (a,) in (2.7) is 
P k 

J,(cg)=.& 1 X(a)sinkcrda = Ca,cos(k--++'/,)a0 
wn1/2 (a- a0) 

(2.9) 
4 

m_O 

40-1, a,= -cosp, a,= P,-2cos~P,_1 fPmm2 (2.10) 

The integrals (2.9) were evaluated by residue theory [5] by passage to the variable 

t = exe (in\ 
The kernel R, (a,, a,) in (2.5) has the form 

P 

Rd%9aO)=- & \ dK1 (a -al) X (a) da 

-% 
da sin r/a (a - a~) 

(2.11) 

where K, is the kernel (1.3). Evaluating the integral in the right side of (2.11). we 

obtain 

R~@~,cLo)=--cos~+~ cos(rp,+rp,)+~{~(cosa,-cosB)x 

X [( 1 + ‘9) cm (93 - 93) - 5 cos (cp2 + cp,)] - sin (cpl - cpd} (2.12) 

where 
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pl& = shxco~~/~m + i ch XS~ '12 w 

p22&rp,= 2 (ch 2x cos u1 -cosp+ ish2xsinaJ 

p.#% = chxcosl:,o + ishxsinl/,o, o=a -a 0 1 

The function Yy, in (2.6) is 
P 

y’, fal) = $ 1 Icl (a -;yay l/a = da 

4 

(2.13) 

(2.14) 

This integral has not been evaluated successfully in closed form. It can be taken either 
numerically (as will be discussed below), or by using the expansion 

m 1 f 2kz 
K&-a&,) = 2 7” *%OSk(a-a.J 

k==l 

for the kernel (1.3). Then 

y, (a,) = +i ‘+ tip’= (Pk + &+) COS kCt, (2.15) 
k=l 

As is proved in the theory of singular integral equations [S]. the Carleman method 

used above to obtain (2.5) is equivalent. Hence, taking into account the uniqueness 

of the bounded solution of (2.1). the deduction can be made that (1.2) contains as many 
solutions as does (2.5). This latter has a unique solution, not bounded at the endpoints, 

with a singularity of the type 1 / X (a), where X (a) is the canonical function (2.4). 

This solution is determined if the magnitude p = me of the contact zone is given, 

which is related to the external stress resultant P by the condition (1.8). 

9. We seek the solution of (2.5) in the form 

4 
_ AY (4 

fix (=I (3.1) 

Then Eq. (2.5), conditions (2.6) and (1.8) are transformed into the following relation- 
ships 

P 

y (a01 + f S @ (s go) - 4 (al, ~10)) $f$ =CO+ (3.2) 
--P 

A = --m[lnsin+-+ { 
Y (al ) - YI (al) -1 

P 
X (a3 

vb I (3.3) 
_. 

(3.4) 

Let us transfer to the new variable Y in (3.2) - (3.4), defined by the formula 

sin+ = sin 5 
/ 

P sin-Z_ 

The segment (-Bv p) is then deformed into the segment (-n, n) and all the inte- 
grands become bounded since da I X (a) = dy / 2 cos lie a. Furthermore, because 
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of the evenness of the reaction q, and therefore, of the new desired function y also, 
the integrals between --n: and JC can be replaced by integrals between zero and 5d. 
Only the part of the kernel fir and of the function ty, even in aI should hence be 
taken. We now divide the segment 0, n into Nequal parts, and apply the Simpson 
quadrature formula. Hence in place or (3.2) we obtain a system of N f 1 algebraic 
equations. The system must be computed for some one value of the parameter w,, 
defined by (1.4). since according to (3.1) - (3.4) the function y is independent of 

o,,, and the reaction Q and the stress resultant P are linearly independent. 

4. Equation (3.2), transformed by the method mentioned above to a system of 11 
algebraic equations, was solved numerically on the BESM4 computer. The value of 
the function V,and the reaction Q was computed for values of the coordinate fo = 

= 0.05, 0.1, 0.3, 0.5, 1.0, 2.0 and 5.0 . Different values of the parameter B character - 
izing the magnitude of the contact xone were selected for each of the & values pres- 
ented above. For to = 0.05 and 0.1 we selected B = 0.05, 0.1, 0.3, 0.5 and l.O,while 
for the remaining E,, (except the mentioned values), we took the values B = iT5, 2.0, 
2.5, 3.0 and 3.1. Twenty terms were kept in the series for (2.Q Results for shells with 
the parameters R I h = 100 and i - Ra / R1 = 0.01 for m = 1 and E,, = 2 were comp- 
ared with 20 and 40 terms of the series (2.7). The first four significant figures for Y 
hence agreed. Some results of computations for a shell with the parameters R / I; = 
=iOO andi - R0 / R, = O.Oi,loaded by two stamps (m = 2), are presented in Fig. 2. 

It is shown in Fig. 2a how the solutions of (3.2) changes at the center of the arc of 
contact (three upper curves). and at its endpoint (three lower curves) depending on the 
distance E. between the shell endface and the stamp. Thechange in Y along the arc 
of contact between a =t 0 and a = B is a monotonely decreasing function, convex 
upward. We do not present the curves Y = g (a) for lack of space. It is seen from 
Fig. 2a that for small contact zones (the curve B = 0.1) the function y practically 
does not change up to the value SO = 0.5, then its value at the center of the contact 
none Y (0) rises sharply, and the value at the endpoint v (B) sharply decreases. As the 
zone of contact B increases, the character of the curves y is still retained, but the 
influence of the shell endface is extended farther and farther into the shell (the curves 
B = 0.5 and 1). For go = 5 the shell behaves practically as an infinite shell, and the 

influence of the endface gives no effect. The picture of the change in the dimension- 
less reaction of the stamp 4~B / P at the center of the contact zone is shown in Fig, 2b 
(P is the total force applied to all the stamps from outside). The points to the right 

are the solution for an infinite shell. The character of the change in the dimensionless 
reaction along a length of contact zone of magnitude B = 0.5 is shown in Fig. 2c for 
different distances &, between the shell endface and the stamp. The dashes show the 
solution for an infir& shell obtained separately. As we see, the character of the re- 
action changes abruptly near the endface. but even for 50 = 0.5 is slightly different 
from the reaction in an infinite shell. 

In COIIC~U&KI, let us mention that the unbounded growth in reaction at the endpoint 
of the contact xone is a corollary of hypotheses propounded in shell theory. the hype- 
thesis of straight normals, and the hypotheses of absence of compression in the shell 
layers in the normal direction. Here a picture analogous to the picture in crack theory 
holds. when the replacement of a discrete model of a solid by a aminUOUS m&l 
results in unbounded stresses at the crack ends. The reaction at the ends of the contact 
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zones certainly vanishes in a real shelL However, the thither the shell, the greater 
the concentration of the reaction near the ends of the contact none. An unbounded re- 
action at the ends is not a disadvantage of the solution, since all the stress resultants 
and moments in the shell middle surface, with the exception of the transverse forces, 
will hence be bounded in the neighborhood of the ends of the contact zone. 

6, As an application, let us present the calculation of the integral (2.11). From 
(1.3) we find 

II= Ich2z - co5 (a - %)I-‘, fi = sin (a - a~ / [ch& _ co8 (a _ ad1 
Let us use the notation 

B 
1 Jj=- - s fj (a) X (a) da 

211 _-B sin ‘12 (a - a~) (i = 1, 2) 

It can be proved that the following differentiation formula holds 

B 
1 f' 64 X (4 da 

s ~_--B sin$(a -a0) s 

which is valid for an arbitrary smooth function satisfying the condition 

X (4 f (4 = 0 npr! a = j-$ 

m 
P 

0.6 

a5 

R4 

^_ 

-0 

-0 

(5.1) 
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Utilizing it to evaluate the integral of the first member in (5.1). we obtain 

Rl(al, a) ==rsh2sX(z) -&- [X(a)Jl(a)] f + y JZ (a) 

Let us evaluate J, (a). L-et us make the change of variable t = exp (ia), which transfers 

the segment I- B, pj into the arc of a unit circle (- BY B) (Fig. 3). Let Xf (t) denote 

the limit vaiue of the canonical function 

X (2) = If@ -a1)(Z-h), al = e-‘P, bl = ,$a 

when approaching the arc f on the left if we go from aI to 

4. Let us understand X (z) to be the branch equal to z in 
the neighborhood of the point z = 00. Then 

J. 

x (a) = 
-i? 

--e x+ 0) 
(5.3) 

‘\J and the integral J, is transformed into 

&la. b: 
(5.4) 

a, =e+P 
JAZZ__ 

J 
(P - tla) x+ (L) t1t 

Fig. 3. 
4nitl al t2 [ch 2x - (t’ + tiL)f’Wl] t - to 

where and to are points on an arc corresponding to a, 
and ao. Utilizing the residue theorem and the fact that X (z) changes sign upon passing 

from one edge of the arc (slit) to the other, we then easily obtain the following formula 
for integrals of the type (5.4) [S] 

b’ f(t) dt _ s -- 
t - to 

- zi [XC, (to) + G, (to)1 

a1 

(5.5) 

where Go and G, are the principal parts of the integrand f (z) at the points z = -‘k and 
2=03 * respectively. We have for the integrand (4) at zero and infinity 

G, (to) = -2t, / to, G, (to) = -2t, 

There are still simple poles at the points 

z1 = t, (ch2z + sh&). zz = t, (ch2z - sh2z) (5.6) 

Substituting all four principal parts into (5.5). we obtain 

NOW substituting zl and z, from (5.6) into the formula for X (z), we find 

X (al) = 2e’@* (ch z + sh z) VI/? (a + ib), a = ch 2x co3 a1 - cos 6 

X (2%) = 2d’lio1 (ch z t_ sh z) VI/Z (a - ib), b=shksinal 

Losses in sign can occur in the evaluation of X (zl) and x (z.,) . In order to reduce it, 
let us note that the point q lies on a radial arc exterior to the arc of the unit radius, 

and 4 on the same ray interiorly so that 

x (22) - X’ (t), N (Zl) + x- (1) for zl*h+ t 
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Comparing the first limit with (5.3). we see that it is necessary to change sign in the 
formula for -y (;J) .The further transformation of the integral Js is evident, The integral . 

.rl is also evaluated exactly. Performing computations, and substituting J,, Js into 

(5.2) we arrive at (2.12). Let US evaluate the integral (2.9). Assuming t I &’ and 
utilizing (5.3) we represent the integral (2.9) as 

Jk 

t’lr bl 
-+ s x+ (t) (tk - t-k) dt 

01 
: (: - to) 

(5.7) 

In the neighborhood of the points z = 9 and 2 = 00 the canonical function X (I) can 

be represented, respectively, as 

1 1 
x0- 

=- 
1/1-222coa~+r~ 

i P,z” 

&i= ZJfl 
i 

=- 
-22r-~cos$+r’ 

;-is 

n-0 

(568) 

where P, = P, (co+) are Legendre polynomials. Utilizing the expansion (5.8), the 
principal value of the function 

f(z) = - x&(z” - z-k)/ z = - X”(z) (zk - z-k)/ ZX (z) 

can be represented, respectively, in the neighborhood of z t o and z = 03 as 
k-l k 

Go (z) = “r: p/-k+’ - 2 cos fi 2 p,zn-k + 2 Pnrk-l 

n4 
k-2 

G, (z) = 
2 p*zk-n-2_2cos;$ ..k-_1 i Pnzk-n 

(5.9) 

n=O & n==O 

Let us set rr = ni - 1 in the first sum of the formula (5.9) and n = rzl _t i in the third, 
and again denote n1 by n. The expressions (5.9) take the form 

k-l 

Go(z)= 2 (p,+l --cosp Pn+ 'n-l) ' 
n-k+ potz-“-1 _ z-k) 

k-l 

G,(z) = 2 (P,+l - 2 cos fi P, + P,_i) zk+t + PO (Z’ - z’-‘1 

Let us set z = to here, let us then substitute Gu (LO) and G, (to) into (5.5). let us then 
replace the subscript n by n, - 1 and again denote nl by n. Hence. we obtain the ex- 
pression for the integral (5.7) as 

J,= i (Pn-2 r.os~P,_~+P,_2)~os(k-~++~2)a0+cos(k+~/2)clo-cos(~-~ySa0 

n=l 

Comparing the right side of this expression with the right side of (2.9). we obtain form- 
ula (2.10) for the coefficients a,. 
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The question of new equilibrium modes of a uniformly compresses closed elastic 
spherical &ll for loading values close to the critical one is considered for which 
the membrane state of stress loses stability. The problem [l] reduces to cons- 
tructing solutions branching off from the trivial solution in the neighborhood of 
the bifurcation point, for the equations in @& The investigation is carried out 
by the Liapunov-Schmidt method for a broad class of operator equations in 
Banach space @$ 

The author of [4, S] used the aurlytical Liapuuov-Schmidt method earlier to 
construct new equilibrium modes in the case of plates and shallow shells. The 
problem of the bifurcation of the trivial solution of a shallow spherical segment 
by the Poind method was investigated in fl], where meridian stress resultants 
in equilibrium with the uniformly distributed surface pressure are given on the 
edge, whereupon a membrane equilibrium mode always exists. For the problem 
of an uniformly compressed closed sphere when the spectrum is simple, the be- 
havior of the solutions in the neighbo&od of the bifuroation point has been 
studied in p] numerically on a computer by using the method of “adjustment”. 
The survey [B] is devoted to this same problem. 

1. Formulation of thr problem. The Reissner equations for axisymmetric 
elastic deformation of a closed s-u1 shell subjectad to uniformly distributed prcs~- 
ure p3] are considered in dimeudonless form 

9 {(O - Cp,)” + otg E (a - Cp,)’ - g (sin CI, - sin CDs) + (j-1) 


